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PARAMETRIC INSTABILITY IN THE OSCILLATIONS OF A BODY MOVING UNIFORMLY 

IN A PERIODICALLY INHOMOGENEOUS ELASTIC SYSTEM 

A. I. Vesnitskii and A. V. Metrikin UDC 531.534 

Transitional radiation of various types occurs in the uniform and rectilinear motion 
of a perturbation source in an inhomogeneous medium. In [i, 2], there is a survey of such 
radiation for electromagnetic and acoustic waves. In [3], the radiation was examined for 
elastic waves arising in the uniform motion of a mechanical object in an inhomogeneous 
elastic system. Features of the radiation in such a system are related to the interaction 
between the radiation and the oscillations of the object. Here we consider parametric ob- 
ject oscillation excitation during emission. 

When a perturbing source moves in a periodically inhomogeneous medium, the radiation has 
a discrete spectrum in the steady state [i]. In a reference system coupled to the moving 
source, the spectrum is equidistant. The object moving uniformly in a periodically inhomo- 
geneous elastic system is subject to a transverse force equivalent to the reaction of a 
spring with periodically varying rigidity. That situation naturally leads to parametric ob- 
ject oscillation [4], which is demonstrated here. It is necessary to examine such interac- 
tion for example in relation to the requirements for high-speed railroad transportation. A 
train moving over rails under certain conditions may begin to show a galloping motion, and 
here we show that the parameter region where it occurs expands as the speed increases. 

i. We consider the uniform motion z = vt of a body with mass m along an unbounded 
string whose tension and density per unit length are correspondingly N and p, and which lies 
on a periodically inhomogeneous elastic base. The rigidity of the base is described by 

k (z) = k0 (1 + ~ cos (2~z/d)), 

i n  which  k 0 i s  t h e  mean r i g i d i t y ,  d t h e  p e r i o d  o f  t h e  i n h o m o g e n e i t y ,  and p ~ 1 a d i m e n s i o n -  
l e s s  s m a l l  p a r a m e t e r .  

A d e s c r i p t i o n  o f  t h e  s e l f - c o n s i s t e n t  m o t i o n  o f  t h e  body and s t r i n g  i s  [5] 

U . - - g ~ + U ( t + ~ c o s ( •  U(at, t ) = g ( t ) ,  (i.I) 

( t - - =  ~) [U~]~==, = M ~ ( t ) ,  [U]~==t=O,~U+O for  x - - + ~  ~. 

Here U(x, t) is the transverse deviation of the string, x = zh/c and t = h~ (c 2 = N/p, h 2 = 
k0/p) are the dimensionless coordinate and time, y(t) the transverse coordinate of the body, 
with M = mh/cp and a = v/c (with a < i subsequently) the dimensionless mass and longitudinal 
velocity, and • 2~c/dh. The square brackets denote the differences between the values of 
the expressions them to the right and left of the given x. 

We seek the solution to (i.i) as 

U = U  ~  1 + . . . ,  g = g ~  ( 1 . 2 )  

2. I n  t h e  z e r o t h  a p p r o x i m a t i o n  (p  = 0 ) ,  (1.2) r e p r e s e n t s  t h e  m o t i o n  o f  a body on a 
string lying on a homogeneous elastic base: 

U?t -- U~x + U ~  U ~ (=t, t) = g~ (t), ( 2 . 1 )  

- -  U 0 (i ~2)[ x]x=at=~yo(t), [UO]x==t=O, Uo.._>_O for Z-+-Nco. 

As the solution to (2.1), one naturally takes a function describing the oscillation of 
the body-string system for t + ~. We first determine the oscillation frequency for t + ~. 
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We apply an integral Fourier transformation with respect to the coordinate to (2.1): 

V ~ (k, t) = ~ U ~ (x, t) exp ( i kx )  dx .  

In terms of transforms we have 

V~t + (i q- k ~) V ~ = - -  M y  (t) exp ( i ak t ) .  ( 2 . 2 )  

We t a k e  t h e  i n i t i a l  c o n d i t i o n s  a s  z e r o  ( t h i s  i s  p e r m i s s i b l e  b e c a u s e  we a r e  i n t e r e s t e d ~  
o n l y  i n  t h e  n a t u r a l  f r e q u e n c i e s  o f  t h e  b o d y  a t  t h i s  s t a g e ) ,  and  w r i t e  t h e  s o l u t i o n  t o  ( 2 . 2 )  
a s  a c o n v o l u t i o n :  

t 

ro (k, t) = - ~s~  ~o (~) ~ p  ( i ~ t )  ~ (" - ~) V~  + k---D d~. 
o ~ I  +"k ~ 

We a p p l y  an i n v e r s e  F o u r i e r  t r a n s f o r m a t i o n  t o  ( 2 . 3 ) ,  r e v e r s e  t h e  i n t e g r a t i o n  o r d e r ,  
t h e  f o r m u l a  [5 ]  

�9 COS(k/) Vb  2 + k  2 
0 

(2.3) 

and use 

in which @ is unit function and J0 a zero-order Bessel function to get 

t 

U ~ (x, t) = - -  - f j  (~) Jo ~ V (t - ~)~ - -  ( x - - a T )  2) 0 ( ( t - - ~ ) - - j x - - a ~ l ) d ~ .  (2 .4)  
O 

We use the condition that the body moves without detachment and the features of the 
convolution operation to get from (2.4) an equation describing the oscillations (we recall 
that a < i): 

t 

0 

We substitute y~ = Aexp(i~t) into (2.5) and take t + ~ to get an equation defining 
the natural frequencies of the body for t + ~: 

whence 
1 -- MQ2/2f:f- ~2 _ ~2 = O, 

The oscillations for t § ~ will thus be described here by 

g~ = A exp (i_o.t) + B exp (--iQt). (2.6) 

The oscillations of the string corresponding to the steady-state oscillations of the body for 
t + = are readily derived by substituting (2.6) into (2.1) and seeking the solution as 

U (x, t) = ~ Cn exp (icont - -  iknx) .  ( 2 . 7 )  
7~ 

The solution is completely analogous to that derived in [6, 7], so we write the final 
expression for U~ t) at once: 

U ~ = CA exp ( i o i t  - -  ik jx)  + Ca exp (i(oj+2t - -  ik~+2x), 

II x < a t ,  

] =  [ x > a t ,  

k,2 = ( a f ~  •  2 - o . 2 ) / ( 1 - ~ 2 ) ,  o , 2 = ~ k 1 2 + 0 _ ,  ( 2 . 8 )  

ks,4 -----(--a~ ----- i]/l -- a 2 -- -Q")/(I ~ 0~2), 03,4 = ak3,4 -- .Q, 

C~t = A~2/21/1 - -  a 2 - -  02, Ca = B~2/211t  - -  (z 2 - -  .Q2. 

Then for t § ~, a body moving uniformly over a homogeneous string and oscillating with 
frequency ~ is accompanied by deflection in the string, whose oscillation amplitude falls 
away from the body. 
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3. We now consider the first approximation with respect to the small parameter ~. We 
substitute (1.2) into (i.I) and equate terms of order ~ to get 

U~t - -  U ~  + U ~ = - -  U ~ cos (• U ~ (at, t) = y~ (t), ( 3 . 1 )  

_ _  U l (l ~ )  [ ~]~=~, = M ~  ~ (t), [U1]~=~ = O, U ~ - ~  0 f o ~  x - ~  _+ ~ .  

The s o l u t i o n  t o  ( 3 . 1 )  i s  a s u p e r p o s i t i o n  o f  t h e  f o r c e d  s o l u t i o n  f o r  t h e  f i r s t  e q u a t i o n ,  
which  d e f i n e s  t h e  o s c i l l a t i o n  f r e q u e n c y  f o r  t h e  moving  m a s s ,  and t h e  s o l u t i o n  due t o  t h o s e  
o s c i l l a t i o n s .  We s e e k  t h e  s o l u t i o n  t o  t h e  f i r s t  e q u a t i o n  in  ( 3 . 1 )  i n  t h e  ( 2 . 7 )  f o r m :  

U~o r = C~ exp ( i ~ t  - -  ix (k~ + • + C~ exp ( i ~ t  --  ix (k~ - -  • + 

z_ C~ exp (ia~+~t - -  ix (~+~ - -  • + C{ exp (i(~+,t - -  ix (~+~ + • ( 3 . 2 )  

in which 

C~.2 = - -  C./2ky (kj + 2• C{,3 = - -  CB/2~+~ (kj+: +_ 2• 

The s o h t i o n  t o  ( 3 . 2 )  d e f i n e s  t h e  o s c i l l a t i o n  f r e q u e n c y  f o r  t h e  moving  mass  b e c a u s e  t h e  
phases of the waves propagating in the string at x = ~t should coincide with those of the 
mass oscillation. One uses this and writes for yl(t) that 

2 

y a ( t ) =  ~ { A ~ e x p ( i t ( Q + ( - - l ) ~ a •  + A ~ + , e x p ( - - i t ( Q + ( - - t ) ~ a •  ( 3 . 3 )  

The o s c i l l a t i o n s  in  t h e  moving  mass in  t u r n  g e n e r a t e  c o r r e s p o n d i n g  o s c i l l a t i o n s  in  t h e  s t r i n g .  
We s u b s t i t u t e  ( 3 . 3 )  i n t o  ( 3 . 1 )  and d e f i n e  t h e  s o l u t i o n  as  t h e  ( 2 . 7 )  t r a v e l i n g  waves  t o  g e t  a 
s o l u t i o n  d e s c r i b i n g  t h e  o s c i l l a t i o n s  o f  t h e  s t r i n g  e x c i t e d  by t h e  u n i f o r m l y  moving mass  o s -  
c i l l a t i n g  i n  a c c o r d a n c e  w i t h  ( 3 . 3 ) :  

L nati ,  = { 
Here (3.4) 

3 , 4  - -  - 

k l , . = ( -  ~ (~  + ~• +_+_ ~V-I - ~ - (~  + ~• ~ , , = ~  (z.~,o-• 

# ~ , ~ = ( -  ~ ( e  - ~•  • ~ V h  - ~ - (~  - ~ •  ~ , ~ - ~  (~ ,~  + •  

To derive the unknowns A n and D n (n = i, 4), it is necessary to use the nondetachment 
condition for a body ul(at, t) = y1(t), the condition for the continuity of the string at 
the point where the mass is [U1]a=at = 0, and the balance for the transverse forces on the 

moving mass (i - a2)[U~]x=~t = M~l(t). As U l = U~o r + Unat ,I we get 

n .  I ~ 2  - ( - t )  ~(c~ - c ~ ) } / 1 2 V t  - (~ + ( -  D'~• 
D~ = A,~--C~. (3.5) 

Then (2.8), (3.2), and (3.4) describe the oscillations of the string and correspondingly 
of the body for t § ~ if e• is not close to twice the natural frequency of the oscillations 
for the body moving over a homogeneous string ~. In the resonant case, when 2Q = •215 An and 
Dn tend to infinity, which is readily seen from (3.5), on the basis that ~ satisfies 2 • 

/i - ~2 _ ~2 _ M~2 = 0. 

When the system parameters satisfy 

2~ = •215 + 6, (3.6) 

(61 ~ ~, small frequency difference), the solution is incorrect; (3.6) is analogous to the 
condition for parametric resonance in a system described by a Mathieu equation [4]: 

.- 

x + ~5 (t + cos (%t)) = O. 

In  f a c t ,  ~ i s  t h e  n a t u r a l  f r e q u e n c y  o f  a body  moving u n i f o r m l y  on a u n i f o r m  s t r i n g  and c o r r e -  
s p o n d s  to the natural frequency ~0 in the unperturbed Mathieu treatment, while an is simply 
the frequency of change in mp, since the rigidity of the elastic base changes with frequency 
i a• the mass uniformly moving with velocity ~. 
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Then (3.6) is analogous to the condition 2~0 = Up + 51, under which classical parametric 

resonance sets in (basic instability zone). 

4. We consider the resonant case, where 

• = (2~ + ~)I~ (4.1) 

The solution to (i.i) on the parametric resonance scheme used in [4] is sought as 

y ( t ) =  A (-0 exp (it (Q + p~6))+ B(T)exp ( - - i t (~  + ~t6) )+ ~ty' (t), 

u (~, t) - c~ (T, ~) exp (u (,,)j + t~) - ikjz) + c~ ('~, ~) exp (it (,oj+2 - ~ )  - ikj+ix) + ~U' (z, t), ( 4 . 2 )  

in which �9 = ~t; ~ = ~x; w n and k n (n = i, 4) are defined by (2.8). 

We substitute (4.2) into the first equation in (i.i) to get to terms of order ~ that 

U],  - -  U'z .  -r' U 1 = - -  2 e x p ( i t ( o ) j  -~- ~tS) - -  ik jx )  {~oj( iC~T - -  5C~)  ~- 

+ ikjC~} - -  2 e x p  ( i t  (r - -  ~ 5 ) -  iki+~x ) {~i+~ (E?~T + 5C~) Jr ikj+~C~t} -- 

- -  cos (• (C~ e x p  { i t  (coj + ~.8) --  ikjx) § C~ e x p  ( i t  (coj+, --  ~6) - -  ikj+,x)). ( 4 . 3 )  

F o r  U ~ ( x ,  t )  n o t  t o  i n c r e a s e  w i t h  t i m e ,  ( 4 . 3 )  shows  t h a t  t h e  f o l l o w i n g  c o n d i t i o n s  m u s t  b e  
met: 

(oj ( iCJ~ -- 6C~) ~- il~'jC{~ = O, e)j+2 ( iC~ + ~C j) -~ i]r ~-0. ( 4 . 4 )  

We a s s u m e  t h a t  ( 4 . 4 )  i s  me t  and  d i s c a r d  t h o s e  t e r m s  on t h e  r i g h t  i n  ( 4 . 3 )  whose  p h a s e s  
for x = at are different from it(f~--a• and --it(.Q--a• [or on the basis of (4.1), from it x 
(~ + ~5) and -it(~ + ~)] to get from (4.3) that 

U~t - -  U~:r + U 1 = - -  -~1 C~exp( i t (o )~_~uO)_i (k~_~•  "21 C~exp(it(o)i+2. --  ~ tS)- - i (k~+z--•  (4  . 5 )  

We write the solution to (4.5), as in the nonresonant case, as a superposition of "the forced 
and natural solutions: 

U ~ ~--- UXfor~ - U~nat. ( 4 . 6 )  

Here U~for = W j exp (it (o)~ -~- tt6) -- i(l~'~ -+- • x) -~- W{ exp (it (0)i+~ -- bt6) -- i (k~+~ -- • x); 

W{.~ = - -  C~,_~/{2• (• _ 2k~.~+_,)}. 

We now e x a m i n e  t h e  b a l a n c e  i n  t h e  t r a n s v e r s e  f o r c e s  a c t i n g  on t h e  m o v i n g  m a s s .  We u s e  

( t  -- ~2) [U~]~=~, = Mij(t) ,  

and  w r i t e  t h e  U ( x ,  t )  and  y ( t )  w r i t t e n  i n  a c c o r d a n c e  w i t h  ( 1 . 1 )  i n t o  ( 6 . 2 )  and  r e s t r i c t  c o n -  
s i d e r a t i o n  t o  t e r m s  o f  o r d e r  ~ and  u s e  ( 4 . 5 )  t o  g e t  

(1 - -  ~ )  [U~xnat ]~=~t - -  M y  (t) = exp (it (9.. + ~6)) [2.QM (i~l - -  5A) - -  

- - ( I - -  ~ " - ~  C ~ 

• { -  2.oj~ (~B + ~B) --  (~ - -  ~ ) ( C ~  -- C~ --  i(k~ + • W ~ +  ~(~ + • ( 4 . 7 )  

The n a , t u r a l  f r e q u e n c y  o f  t h e  m a s s  i s  ~ ,  so  f o r  y Z ( t )  n o t  t o  i n c r e a s e  i n  t i m e ,  t h e  e x p r e s s i o n s  
i n  b r a c e s  i n  ( 4 . 7 )  s h o u l d  become  z e r o ,  i . e . ,  

2f}M (iA 6A) - -  (1 ~ H _ - - ~  }(c ,~ c~-~(~-~)w~+~(~-~)w~)=o, 
- -  2,QM {iB + 6B) - -  (I - -  a ~) ( C~ - -  C~ - -  i (k~ + • W ~ - ?  i (k, + • W~) = 0. ( 4 . 8 )  

Then ( 4 . 4 )  and  ( 4 . 8 )  r e p r e s e n t  t h e  n e c e s s a r y  c o n d i t i o n s  f o r  UZ(x ,  t )  and  y Z ( t )  n o t  t o  
i n c r e a s e .  We s e e k  t h e  s o l u t i o n s  t o  ( 4 . 4 )  and  ( 4 . 8 )  a s  

A (~) = A0 exp (sv),  B (~) = B0 exp (s~), 

C~ = C~o exp ( ~ v  - -  q~) ,  C~ ---- C~o exp ( ) ~  - -  q ~ )  

and use the condition for nondetachment and for continuity of the string, which imply 

C m = C , o = A 0 ,  C 2 o = C ~ o = B o ,  ~ . , ~ - - a q ~ = s ,  

to get after certain algebraic steps that (4.4) and (4.8) imply 
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2~M (is - -  6) A o 4 (5 -- i.~) 

2.QM (~s + 5) B o -/ 4 (~ + ~) 

From (4.9), we get a characteristic equation for s: 

M ~c~ z 
Q2) Bo ~- 0, 8 (a2+  

J//Q2 C52 
8(a S+g~z) Ao=0" 

(4.9)  

s~ = - 52 + 44 ( ~  + ~)2 (t + 2/M~2) ~" 

The c o n d i t i o n  f o r  u n s t a b l e  b o d y  o s c i l l a t i o n  ( p a r a m e t r i c  r e s o n a n c e )  i s  t h a t  s i s  r e a l .  
Then f r o m  ( 4 . 1 )  t h e  b o u n d s  t o  t h e  i n s t a b i l i t y  r e g i o n  ( s  = O) a r e  d e f i n e d  by  

a ~  (1 --  a2)u = O. (4.10) ~• - -  2~  +__ ~ 18(~ ~ + ~)  (~ + 2/M~e~ ) 

Figure 1 shows the hatched instability zones in the a, M plane derived from (4.10) for 
various ~ ~it is assumed that ~ = 0.i). The following conclusions are drawn from Fig. i: 

a) the less the inhomogeneity period d (the larger • the lower the ~ at which insta- 
bility sets in; 

b) as the speed increases, the mass of the body at which parametric resonance occurs 
decreases; and 

c) as the mass of the body and/or the inhomogeneity period increase, the instability 
zone expands in a. 

The uniform motion of a body in a periodically inhomogeneous elastic system causes a 
parametric increase in the body oscillation amplitude. We thus have to consider the origin 
of the energy for pumping the oscillations. It is sufficient to recall that transitional 
radiation occurs in the uniform motion of a body in an inhomogeneous elastic system, which 
exerts a pressure on the body [3]. Consequently, to maintain the uniform motion, one needs 
an external source, whose work goes to increase the energy of the oscillations in the body 
for the corresponding parameters. 

The (4.10) bounds to the instability zone represent the bounds to the basic instability 
zone obtained in the first approximation with respect to ~. To determine the bounds to the 
subsequent instability regions, which arise for ~x =2Q/n + 51 (n= I, 2,, ), or the bounds to 
the main instability zone with higher accuracy, one needs to change the form of the (4.2) 
solution by analogy with what was done in [4]. 

5. We have to consider how minor viscosity in the elastic base affects the result. 
The first equation in (I.i) is rewritten as follows on the basis of a small dimensionless 
viscosity 2~v in the base: 

U , -  U=+ 2~vU, + U(i + ~ cos (•  O. (5.1) 

We substitute the (4.1) solution into (5.1) and take steps analogous to those in Sec. 4 to 
get the condition on the parameters for instability to occur: 

M~e4 (t _ ~ ) z  - -  52(M + 2/Me2) ~ M ~ n ; > O .  ( 5 . 2 )  
i6 ( ~  + a~): (~  + i 6 ~ / ~  ~) 

This shows that when one incorporates low viscosity in the base v, a region appears in the 
~, M plane even for zero 6 (2Q = a• in which the oscillations of the body are stable for any 
~" i We put 6 = 0 in (5.2) to get the threshold viscosity: 

vt~r=-Q~" - - 2 + 2  l + 6 4 ~ s ( ~ + a ~ ) ~  / . 

Figure 2 shows lines for 9thr'in the ~, M plane. Each curve separates the plane into 
two regions. In the region above the curve, there is always a ~ for which there is instabil- 
ity, while in the region below the curve, the oscillations of the body are stable for any ~. 
Figure 2 also shows that: 

a) for a given speed, the threshold viscosity decreases as the mass of the body falls 
(the oscillations may become unstable at a lower base viscosity); and 

b) with a given body mass, the threshold viscosity is the lower the higher the velocity. 
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We thus get parametric resonance in this uniform motion, which is seen as an increase in 
the amplitude of the body oscillations that is exponential for t § ~. The work needed to 
increase the energy in the body oscillations is performed by the external source that main- 
tains the uniform motion. 

Here we have considered nondetachment motion. In a real situation such as a train moving 
on rails, the wheels may separate from the rails and then renew contact with shock interaction. 
Consequently, galloping can occur, which involves a sequence of contact breaks and renewals. 
If the parameters considered here belong to the stability region, it does not mean that the 
motion of the body is free from detachment. If the parameters fall in the region of instabil- 
ity, contact is bound to be broken for t § ~, i.e., it is the sufficient condition for gal- 
loping. 
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